11 research outputs found

    Regional myocardial function after intracoronary bone marrow cell injection in reperfused anterior wall infarction - a cardiovascular magnetic resonance tagging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trials have brought diverse results of bone marrow stem cell treatment in necrotic myocardium. This substudy from the Autologous Stem Cell Transplantation in Acute Myocardial Infarction trial (ASTAMI) explored global and regional myocardial function after intracoronary injection of autologous mononuclear bone marrow cells (mBMC) in acute anterior wall myocardial infarction treated with percutaneous coronary intervention.</p> <p>Methods</p> <p>Cardiovascular magnetic resonance (CMR) tagging was performed 2-3 weeks and 6 months after revascularization in 15 patients treated with intracoronary stem cell injection (mBMC group) and in 13 controls without sham injection. Global and regional left ventricular (LV) strain and LV twist were correlated to cine CMR and late gadolinium enhancement (LGE).</p> <p>Results</p> <p>In the control group myocardial function as measured by strain improved for the global LV (6 months: -13.1 Β± 2.4 versus 2-3 weeks: -11.9 Β± 3.4%, p = 0.014) and for the infarct zone (-11.8 Β± 3.0 versus -9.3 Β± 4.1%, p = 0.001), and significantly more than in the mBMC group (inter-group p = 0.027 for global strain, respectively p = 0.009 for infarct zone strain). LV infarct mass decreased (35.7 Β± 20.4 versus 45.7 Β± 29.5 g, p = 0.024), also significantly more pronounced than the mBMC group (inter-group p = 0.034). LV twist was initially low and remained unchanged irrespective of therapy.</p> <p>Conclusions</p> <p>LGE and strain findings quite similarly demonstrate subtle differences between the mBMC and control groups. Intracoronary injection of autologous mBMC did not strengthen regional or global myocardial function in this substudy.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00199823">NCT00199823</a></p

    Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo

    Get PDF
    Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naΔ±Β¨ve mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.861.86104 cells/ml vs. 336116104 in control mice) and spleen (dexamethasone: 2.861.96105/spleen vs. 956226105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.061.5% vs 3.461.5%*; AITR+: 0.660.4 vs 0.560.3%, CD127low: 4.061.3 vs 5.063.0%* and CTLA4+: 13.8611.5 vs 15.6612.5%; * p,0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Myelofibrosis with Myeloid Metaplasia: New Developments in Pathogenesis and Treatment

    No full text
    corecore